Multi-Variable Calculus Assignment

due Tuesday, April 24, 2001

Exercises

  1. Let F be the vector field in the plane that is defined away from the origin by

     F(x, y)   =  
    ({-y}/{SQRT{x^{2} + y^{2}}},     {x}/{SQRT{x^{2} + y^{2}}})
      .  
    Find the path integral of this vector field over the path C that is given parametrically by
     R(t)  =  (r cos t, r sin t)     for    alpha <= t <= beta 
    when r > 0 is a given constant.
  2. Let C be the path that is given parametrically by

     R(t)  =  
    ((cos(theta))t ,  (sin(theta))t)
          for     0 <= t <= r , 
    where r and theta are constants. Evaluate the path integral
     INT[_{C} F] 
    when F is the vector field that is defined by
    1.  F(x, y)  =  
      (y e^{x y},   x e^{x y})
       .  
    2.  F(x, y)  =  
      (x - y,   x + y)
       .  
    3.  F(x, y)  =  
      ({x}/{SQRT{x^{2} + y^{2}}},   {y}/{SQRT{x^{2} + y^{2}}})
       .  
    4.  F(x, y)  =  
      ({-y}/{x^{2} + y^{2}},  {x}/{x^{2} + y^{2}})
       .  

AUTHOR  |  COMMENT