| r'(t) = (-2 sin t, 2 cos t , 1) |
| ||r'(t)|| = SQRT{5} |
| L = ({Pi}/{2}) SQRT{5} |
| F = \nabla f where f(x, y, z) = x^{2} + x y - y z + z |
| INT[_{C} F] = f(r(2)) - f(r(0)) = f(r(2)) = 76 |
| (- cos t , 1, e^{t} - 1) |
| ( sin t , 0, e^{t}) |
| SQRT{2} |
| {1}/{2} |
| (0, 0, 1) |
This F is a curl. (See problem 2.) So Stoke's Theorem can be used to simplify and to replace the given surface integral by an ordinary double integral over the disk.