Notes on Newton's Method

Supplementary Material for Honors Calculus
 Originally prepared in the Fall Semester 1995

Revised for the Web: July 27, 2004

Proposition: Let f be a function that is differentiable on an interval I and assume further:
(a) The derivative f^{\prime} is either positive throughout I or negative throughout I.
(b) The derivative f^{\prime} is either steadily increasing in I or steadily decreasing in I.
(c) There are points a, b in I for which $f(a)$ and $f(b)$ are both non-zero with opposite sign.

Then:

1. There is one and only one point z in I for which $f(z)=0$.
2. If x is on the convex side of the graph of f in I, then so is $x^{\prime}=x-f(x) / f^{\prime}(x)$, and x^{\prime} lies between x and z.
3. Successive iterations of Newton's method beginning with a point x on the convex side of the graph of f in I will converge to z.
4. Error control principle. If c is any point in I on the concave side of the graph of f and x is on the convex side, then the distance between x and z is at most the absolute value of $f(x) / f^{\prime}(c)$.

Proof: If f^{\prime} is positive in I one has $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I. If instead f^{\prime} is negative in I, then one has $f\left(x_{1}\right)>f\left(x_{2}\right)$ for $x_{1}<x_{2}$. For this reason there is at most one root z in I with $f(z)=0$. The Intermediate Value Theorem for Continuous Functions guarantees that there is at least one root between a and b.
We shall assume that f^{\prime} is positive and increasing. One may reduce each of the other three cases to this case by reflecting either in the horizontal axis or in the vertical line $x=z$ or both. Under this assumption the convex side of the graph of f is the right side. Suppose that $z<x$: then $0=f(z)<f(x)$. We apply the Mean Value Theorem to f on the interval $[z, x]$ to conclude that there is a number u with $z<u<x$ for which

$$
f(x)-f(z)=f^{\prime}(u)(x-z)
$$

Since $f(z)=0$ and $f^{\prime}(u)>0$, one obtains

$$
x-z=\frac{f(x)}{f^{\prime}(u)}
$$

Since f^{\prime} is increasing, we find $f^{\prime}(u)<f^{\prime}(x)$, and, therefore, $f(x) / f^{\prime}(x)<f(x) / f^{\prime}(u)$. Consequently, $z<x^{\prime}<x$.

In view of (2) one has

$$
z<\ldots<x_{n}<\ldots<x_{2}<x_{1}
$$

Letting

$$
x_{*}=\inf _{(n \geq 1)}\left\{x_{n}\right\}
$$

one has

$$
x_{*}=\lim _{n \rightarrow \infty} x_{n}
$$

and, therefore, taking the limit as $n \rightarrow \infty$ on both sides of the relation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)},
$$

one finds that $f\left(x_{*}\right)=0$. Since by (1) there is only one root of f in I, it follows that $x_{*}=z$.
In the proof of (2) we saw that for x in I on the right side of z the distance from x to z is $f(x) / f^{\prime}(u)$, where $z<u<x$. Since c is on the concave side of the graph of f, i.e., $c<z$, we find also $c<u$, hence, $f^{\prime}(c)<f^{\prime}(u)$. Consequently,

$$
\text { the error }=x-z=\frac{f(x)}{f^{\prime}(u)} \leq \frac{f(x)}{f^{\prime}(c)}
$$

