Dual Presentation with Math Using GELLMU

TEX Users Group (TUG) in San Diego

William F. Hammond

Dept. of Mathematics & Statistics University at Albany Albany, New York 12222 (USA) http://www.albany.edu/~hammond/

July, 2007

1 The Idea

2 Example

The following identity may be regarded as a formulation of the Weierstrass product for the Gamma function.

$$\int_0^\infty t^x e^{-t} \frac{dt}{t} = \frac{1}{x} \prod_{k=1}^\infty \frac{\left(1 + \frac{1}{k}\right)^x}{\left(1 + \frac{x}{k}\right)}$$

Understanding the derivation of this identity is reasonable for a bright student of first year undergraduate calculus in the United States.

These are XHTML + MathML slides!

3 Computation of a Continued Fraction

$$\sqrt{10} = 3 + \frac{1}{\frac{1}{\sqrt{10} - 3}}$$

$$= 3 + \frac{1}{\sqrt{10} + 3}$$

$$= 3 + \frac{1}{6 + \frac{1}{\frac{1}{\sqrt{10} - 3}}}$$

$$= 3 + \frac{1}{6 + \frac{1}{\sqrt{10} + 3}}$$

$$= 3 + \frac{1}{6 + \frac{1}{$$

4 Finding the tangent at a point

Curve: $y^2 = x^3 - 7x + 10$

Point: B = (1, -2)

Use implicit differentiation to find the slope:

$$2yy' = 3x^2 - 7$$

Evaluate when (x, y) = (1, -2): y' = 1 The tangent line at (1, -2) is parallel to any vector with slope 1, e.g., V = (1, 1).

Parametric equation:

$$p(t) = B + tV = (1,-2) + t(1,1) = (1+t,-2+t)$$

5 Mozilla MathML Torture Test 13

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}$$

6 Mozilla MathML Torture Test 24

$$\det \left| \begin{array}{cccccc} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{array} \right| > 0$$

7 Madore's Challenge

In a letter to Godfrey Harold Hardy, Srīnivāsa Rāmānujan Aiyankār asserts that

$$\frac{1}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-6\pi\sqrt{5}}}{1 + \frac{e^{-6\pi\sqrt{5}}}{1}}}} \ = \ \left(\frac{\sqrt{5}}{1 + \sqrt[5]{5^{3/4} \left(\frac{\sqrt{5} - 1}{2}\right)^{5/2}} - 1} - \frac{\sqrt{5} + 1}{2}\right) e^{2\pi/\sqrt{5}}$$

8 Zeta function calculation

With the condition $Z_X(0) = 1$ the function $Z_X(t)$ is determined by its logarithmic derivative:

$$\frac{d}{dt} \log Z_X(t) = \sum_{\substack{x \text{ closed} \\ t \text{ closed}}} d(x) \frac{t^{d(x)-1}}{1 - t^{d(x)}}$$

$$= \frac{1}{t} \sum_{\substack{r \ge 1 \\ r \ge 1}} \sum_{\substack{x \text{ closed } | d(x) = r \}}} r \frac{t^r}{1 - t^r}$$

$$= \frac{1}{t} \sum_{\substack{r \ge 1 \\ r \ge 1}} r c_r \frac{t^r}{1 - t^r} = \frac{1}{t} \sum_{\substack{r \ge 1 \\ r \ge 1}} r c_r \sum_{\substack{m \ge 1 \\ m \ge 1}} t^{rm}$$

$$= \sum_{\substack{\nu > 1 \\ \nu > 1}} N_{\nu} t^{\nu - 1}$$

9 Dual Presentation

- ▶ One source
- ▶ Print and HTML outputs
- ▶ Print and XHTML + MATHML if math is involved

10 How to write for dual presentation (I)

Standard Answers

- 1. Write LATEX, then translate to HTML
- 2. Write SGML or XML, then
 - 2.1 Translate to LATEX
 - 2.2 Translate to XHTML + MATHML

11 How to write for dual presentation (II)

Translating

Translating from LATEX involves

- ► Carefully written LATEX source
- Customized tuning
- ► Hidden learning curve

Tough

12 How to write for dual presentation (III)

The GELLMU Approach

- Must first learn how
- ► Write with LATEX-like syntax
- ▶ Use the vocabulary of an SGML document type

Easier!

13 Conceptual Differences

- No pages
- ► No vertical lengths
- ► Relative horizontal lengths
- ► Content, yes.
- ► Style, no.
- ► Fonts, no.

14 Markup Differences in GELLMU

- ▶ No declaration style markup (like {\centering ...})
- Braced zones provide logical grouping but not scope.
- begin{display} ... \end{display} is the same as \display{ ... }
- ▶ No space allowed between a command and its arguments or between its successive arguments.
- ► The 33 non-alphanumeric but printable ASCII characters may all be referenced by names, e.g., \tld; for "~" is useful in URLs.
- Counters ride with labels.

15 Flow Chart

16 Style

Style choices are made in formatters (arrows at the right end of the chart)

17 Style vs. Content

Style	Content
<pre>\begin{center} \end{center}</pre>	
\it or \textit	\emph
\bf or \textbf	\bold
\textsc	\abbr
\tt or \texttt	\quostr or \path

18 Commands Correspond to XML Elements

LaTeX	GELLMU source	GELLMU XML
\\	\\	 or <fcell></fcell>
&	&	<acell></acell>
\'e	\acute{e}	<acute>e</acute>
é	é or é	é
\frac23	$\frac{2}{3}$	<frac><nm>2</nm><dn>3</dn></frac>
$\left\{\right\}$		<balbr> </balbr>
\sum_j	\sum_j \sum:	<sum>_j</sum>

19 Write a Document

Source for a document:

```
\documenttype{article}
\title{A Simple Sum}
\begin{document}

This is a simple summation formula:
\[ \sum_{k=1}^n k \sum: = \frac{n(n+1)}{2} \
\eos \]

It may be proved easily using mathematical induction.
```

Mathematical induction is part of deductive, not inductive, logic.

\end{document}

20 Build a Document

- 1. Save it as "smalldoc.glm".
- 2. At a command line enter

mmkg smalldoc .

- 3. Read the scroll.
- 4. Inspect the yield:

XHTML PDF XML LATEX HTML

21 Example Documents

- ► The *User Guide* (PDF) (Source)
- ► The *Manual* (PDF) (Source)
- A calculus handout (PDF) (Source)
- ➤ A port to GELLMU of Lamport's "sample2e.tex" (PDF) (Source)
- ▶ Port of an article from *The New Journal of Mathematics*

22 Acknowedgement

The XHTML + MATHML version of these slides uses W3C's *Slidy* by Dave Raggett, a JavaScript/CSS package for sizing and flow control of an HTML or XHTML slide show.

(The slides were generated in a non-standard fashion from GELLMU source.)